Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 22
Filtrer
Plus de filtres










Base de données
Gamme d'année
1.
Pathogens ; 12(9)2023 Sep 20.
Article de Anglais | MEDLINE | ID: mdl-37764990

RÉSUMÉ

Dengue fever has been a public health problem in the Caribbean region since 1981, when it first reappeared in Cuba. In 1989, it was reported in Martinique and Guadeloupe (two French islands 200 km apart); since then, DENV has caused several epidemics locally. In 2019-2021, DENV-1, DENV-2, and DENV-3 were detected. Serotype distribution was differentiated, with DENV-2 and DENV-3 predominating in Guadeloupe and Martinique, respectively. Complete genome sequencing was carried out on 32 specimens, and phylogenic analysis identified the circulation of genotype V for DENV-1, cosmopolitan genotype for DENV-2, and genotype III for DENV-3. However, two distinct circulating groups were identified for DENV-1 and DENV-3, suggesting independent introductions. Overall, despite the context of the COVID-19 pandemic and the associated travel restrictions, these results confirm the active circulation of DENV and specific epidemiological features on each of the two islands. Such differences may be linked to the founder effect of the various introduction events, and to local factors such as the population immunity and the transmission capacity of the vectors. Further genomic and epidemiological characterization of DENV strains remains essential to understand how dengue spreads in each specific geographical context and to prevent future epidemics.

2.
Microorganisms ; 11(2)2023 Jan 18.
Article de Anglais | MEDLINE | ID: mdl-36838207

RÉSUMÉ

Dengue fever is the most prevalent arthropod-borne viral infection of humans in tropical and subtropical countries. Since 1979, dengue has been reported to be endemic in the Lao People's Democratic Republic (PDR), as in many countries in Southeast Asia, with a complex circulation of the four dengue viruses' serotypes (DENV-1 to DENV-4). By sequencing the complete envelope protein, we explored a panel of samples from five Lao Provinces (Vientiane capital, Luangprabang, Bolikhamxay, Saravane, Attapeu) to enrich knowledge about the co-circulation of DENVs in Lao PDR between 2010 and 2016. Phylogenetic analyses highlighted the specific circulation of DENV-1 genotype I, DENV-2 genotype Asian I, DENV-4 genotype I and the co-circulation of DENV-3 genotype II and III. The continuous co-circulation of the four serotypes was underlined, with genotype or cluster shifts among DENV-3 and DENV-1. These data suggested the emergence or re-emergence of DENV strains associated with epidemic events, potentially linked to the exchanges within the territory and with neighboring countries. Indeed, the increasing local or regional connections favored the dissemination of new isolates or new clusters around the country. Since 2012, the surveillance and alert system created in Vientiane capital by the Institut Pasteur du Laos appears to be a strategic tool for monitoring the circulation of the four serotypes, especially in this endemic country, and allows for improving dengue epidemiological knowledge to anticipate epidemic events better.

3.
PLoS One ; 17(7): e0271439, 2022.
Article de Anglais | MEDLINE | ID: mdl-35839218

RÉSUMÉ

The first documented chikungunya virus (CHIKV) outbreak in Lao People's Democratic Republic (Lao PDR) occurred in 2012-2013. Since then, several imported and a few autochthonous cases were identified by the national arbovirus surveillance network. The present study aimed to summarize the main genetic features of the CHIKV strains detected in Lao PDR between 2014 and 2020. Samples from Lao patients presenting symptoms compatible with a CHIKV infection were centralized in Vientiane Capital city for real-time RT-PCR screening. Molecular epidemiology was performed by sequencing the E2-6K-E1 region. From 2014 to 2020, two Asian lineage isolates (e.g. French Polynesia; Indonesia), one ECSA-IOL lineage isolate (e.g. Thailand) and one unclassified (e.g. Myanmar) were imported in Vientiane Capital city. Sequences from the autochthonous cases recorded in the Central and Southern parts of the country between July and September 2020 belonged to the ECSA-IOL lineage and clustered with CHIKV strains recently detected in neighboring countries. These results demonstrate the multiple CHIKV introductions in Lao PDR since 2014 and provide evidence for sporadic and time-limited circulation of CHIKV in the country. Even if the circulation of CHIKV seems to be geographically and temporally limited in Lao PDR, the development of international tourism and trade may cause future outbreaks of CHIKV in the country and at the regional level.


Sujet(s)
Fièvre chikungunya , Virus du chikungunya , Fièvre chikungunya/épidémiologie , Virus du chikungunya/génétique , Épidémies de maladies , Humains , Laos/épidémiologie , Phylogenèse
4.
Pathogens ; 12(1)2022 Dec 25.
Article de Anglais | MEDLINE | ID: mdl-36678379

RÉSUMÉ

In 2012−2013, chikungunya virus (CHIKV) was the cause of a major outbreak in the southern part of Lao People's Democratic Republic (Lao PDR). Since then, only a few imported cases, with isolates belonging to different lineages, were recorded between 2014 and 2020 in Vientiane capital and few autochthonous cases of ECSA-IOL lineage were detected in the south of the country in 2020. The CHIKV epidemiological profile contrasts with the continuous and intensive circulation of dengue virus in the country, especially in Vientiane capital. The study's aim was to investigate the ability of the local field-derived Aedes aegypti population from Vientiane capital to transmit the Asian and ECSA-IOL lineages of CHIKV. Our results revealed that, for both CHIKV lineages, infection rates were low and dissemination rates were high. The transmission rates and efficiencies evidenced a low vector competence for the CHIKV tested. Although this population of Ae. aegypti showed a relatively modest vector competence for these two CHIKV lineages, several other factors could influence arbovirus emergence such as the longevity and density of female mosquitoes. Due to the active circulation of CHIKV in Southeast Asia, investigations on these factors should be done to prevent the risk of CHIKV emergence and spread in Lao PDR and neighboring countries.

5.
Microorganisms ; 9(11)2021 Oct 30.
Article de Anglais | MEDLINE | ID: mdl-34835389

RÉSUMÉ

Since its first detection in 1979, dengue fever has been considered a major public health issue in the Lao People's Democratic Republic (PDR). Dengue virus (DENV) serotype 1 was the cause of an epidemic in 2010-2011. Between 2012 and 2020, major outbreaks due successively to DENV-3, DENV-4 and recently DENV-2 have been recorded. However, DENV-1 still co-circulated in the country over this period. Here, we summarize epidemiological and molecular data of DENV-1 between 2016 and 2020 in the Lao PDR. Our data highlight the continuous circulation of DENV-1 in the country at levels ranging from 16% to 22% among serotyping tests. In addition, the phylogenetic analysis has revealed the circulation of DENV-1 genotype I at least since 2008 with a co-circulation of different clusters. Sequence data support independent DENV-1 introductions in the Lao PDR correlated with an active circulation of this serotype at the regional level in Southeast Asia. The maintenance of DENV-1 circulation over the last ten years supports a low level of immunity against this serotype within the Lao population. Thereby, the risk of a DENV-1 epidemic cannot be ruled out in the future, and this emphasizes the importance of maintaining an integrated surveillance approach to prevent major outbreaks.

6.
Lancet Reg Health West Pac ; 13: 100197, 2021 Aug.
Article de Anglais | MEDLINE | ID: mdl-34278365

RÉSUMÉ

BACKGROUND: In 2020 Lao PDR had low reported COVID-19 cases but it was unclear whether this masked silent transmission. A seroprevalence study was done August - September 2020 to determine SARS-CoV-2 exposure. METHODS: Participants were from the general community (n=2433) or healthcare workers (n=666) in five provinces and bat/wildlife contacts (n=74) were from Vientiane province. ELISAs detected anti- SARS-CoV-2 Nucleoprotein (N; n=3173 tested) and Spike (S; n=1417 tested) antibodies. Double-positive samples were checked by IgM/IgG rapid tests. Controls were confirmed COVID-19 cases (n=15) and pre-COVID-19 samples (n=265). Seroprevalence for the general community was weighted to account for complex survey sample design, age and sex. FINDINGS: In pre-COVID-19 samples, 5·3%, [95% CI=3·1-8·7%] were anti-N antibody single-positive and 1·1% [0·3-3·5%] were anti-S antibody single positive. None were double positive. Anti-N and anti-S antibodies were detected in 5·2% [4·2-6·5%] and 2·1% [1·1-3·9%] of the general community, 2·0% [1·1-3·3%] and 1·4% [0·5-3·7%] of healthcare workers and 20·3% [12·6-31·0%] and 6·8% [2·8-15·3%] of bat/wildlife contacts. 0·1% [0·02-0·3%] were double positive for anti-N and anti-S antibodies (rapid test negative). INTERPRETATION: We find no evidence for significant SARS-CoV-2 circulation in Lao PDR before September 2020. This likely results from early decisive measures taken by the government, social behavior, and low population density. High anti-N /low anti-S seroprevalence in bat/wildlife contacts may indicate exposure to cross-reactive animal coronaviruses with threat of emerging novel viruses. FUNDING: Agence Française de Développement. Additional; Institut Pasteur du Laos, Institute Pasteur, Paris and Luxembourg Ministry of Foreign and European Affairs ("PaReCIDS II").

7.
Int J Infect Dis ; 105: 595-597, 2021 Apr.
Article de Anglais | MEDLINE | ID: mdl-33713818

RÉSUMÉ

Zika virus (ZIKV) is a Flavivirus transmitted by Aedes mosquitoes, and was responsible for a worldwide outbreak between 2013 and 2016. However, no ZIKV outbreak has been described in Southeast Asia since 2017. In this study, we report the first microcephaly case with probable ZIKV infection during pregnancy in Lao People's Democratic Republic.


Sujet(s)
Aedes/virologie , Épidémies de maladies , Microcéphalie/diagnostic , Infection par le virus Zika/diagnostic , Virus Zika/isolement et purification , Adulte , Animaux , Asie du Sud-Est/épidémiologie , Femelle , Humains , Nouveau-né , Laos/épidémiologie , Mâle , Microcéphalie/épidémiologie , Microcéphalie/virologie , Grossesse , Infection par le virus Zika/épidémiologie , Infection par le virus Zika/virologie
8.
Pathogens ; 9(9)2020 Sep 03.
Article de Anglais | MEDLINE | ID: mdl-32899416

RÉSUMÉ

Dengue outbreaks have regularly been recorded in Lao People's Democratic Republic (PDR) since the first detection of the disease in 1979. In 2012, an integrated arbovirus surveillance network was set up in Lao PDR and an entomological surveillance has been implemented since 2016 in Vientiane Capital. Here, we report a study combining epidemiological, phylogenetic, and entomological analyzes during the largest DENV-4 epidemic ever recorded in Lao PDR (2015-2019). Strikingly, from 2015 to 2019, we reported the DENV-4 emergence and spread at the country level after two large epidemics predominated by DENV-3 and DENV-1, respectively, in 2012-2013 and 2015. Our data revealed a significant difference in the median age of the patient infected by DENV-4 compared to the other serotypes. Phylogenetic analysis demonstrated the circulation of DENV-4 Genotype I at the country level since at least 2013. The entomological surveillance showed a predominance of Aedesaegypti compared to Aedesalbopictus and high abundance of these vectors in dry and rainy seasons between 2016 and 2019, in Vientiane Capital. Overall, these results emphasized the importance of an integrated approach to evaluate factors, which could impact the circulation and the epidemiological profile of dengue viruses, especially in endemic countries like Lao PDR.

9.
PLoS One ; 15(8): e0237384, 2020.
Article de Anglais | MEDLINE | ID: mdl-32764809

RÉSUMÉ

Dengue fever is one of the major public health problems in Lao PDR. Over the last decade, dengue virus (DENV) epidemics were characterized by a novel predominant serotype accompanied by at least two other serotypes. Since 2008, DENV-2 circulated at a low level in Lao PDR but its epidemiologic profile changed at the end of 2018. Indeed, the number of confirmed DENV-2 cases suddenly increased in October 2018 and DENV-2 became predominant at the country level in early 2019. We developed a Genotype Screening Protocol (GSP) to determine the origin(s) of the Lao DENV-2 and study their genetic polymorphism. With a good correlation with full envelope gene sequencing data, this molecular epidemiology tool evidence the co-circulation of two highly polymorphic DENV-2 genotypes, i.e. Asian I and Cosmopolitan genotypes, over the last five years, suggesting multiple introductions of DENV-2 in the country. GSP approach provides relevant first line information that may help countries with limited laboratory resources to reinforce their capabilities to DENV-2 and to follow the epidemics progresses and assess situations at the regional level.


Sujet(s)
Virus de la dengue/génétique , Techniques de génotypage/méthodes , Enquêtes et questionnaires , Virus de la dengue/isolement et purification , Virus de la dengue/physiologie , Humains , Laos , Sérotypie , Facteurs temps , Population urbaine/statistiques et données numériques
10.
PLoS Negl Trop Dis ; 14(5): e0008303, 2020 05.
Article de Anglais | MEDLINE | ID: mdl-32407315

RÉSUMÉ

In New Caledonia (NC), Aedes aegypti is the only proven vector of dengue virus (DENV), which is the most prevalent arbovirosis in NC. Since World War II, the four DENV serotypes have circulated regularly in NC. The epidemiological profile, however, has evolved over the last ten years, with the persistence of DENV-1 circulation and the co-circulation of several DENV serotypes. The current study evaluated the ability of Ae. aegypti from NC to transmit four DENV serotypes (and two DENV-1 genotypes) isolated during recent outbreaks in NC. An Ae. aegypti F1 generation was twice independently orally challenged with each DENV strain (107 FFU/ml). Infection, dissemination and transmission rates and transmission efficiency were measured at day 7 and 14 post-exposure, as well as the quantity of infectious virus particles. Mosquito infection was observed as early as 7 days post-infection. Infection rates between 18 and 58% were measured for all DENV serotypes/genotypes tested. Although dissemination rates ranged from 78 to 100%, transmission efficiencies were low, with values not exceeding 21% at 14 days post-infection for all DENV strains. This study shows that NC Ae. aegypti are moderately competent for DENV in laboratory conditions. In link with epidemiological data, these results suggest implication of other factors in the sustained circulation of DENV-1 in New Caledonia.


Sujet(s)
Aedes/virologie , Virus de la dengue/isolement et purification , Dengue/transmission , Vecteurs moustiques/virologie , Animaux , Dengue/épidémiologie , Virus de la dengue/classification , Épidémies de maladies , Transmission de maladie infectieuse , Femelle , Génotype , Humains , Nouvelle-Calédonie/épidémiologie , Sérogroupe
11.
PLoS Negl Trop Dis ; 14(5): e0008250, 2020 05.
Article de Anglais | MEDLINE | ID: mdl-32401756

RÉSUMÉ

BACKGROUND: The French overseas Territory of the Wallis and Futuna Islands has been affected by several dengue epidemics. Aedes polynesiensis is the main mosquito vector described in this territory. Other Aedes species have been reported, but recent entomological data are missing to infer the presence of other potential arbovirus vectors and to assess the entomological risk factors for transmission of arboviral diseases. METHODOLOGY/ PRINCIPAL FINDINGS: An entomological prospective study was conducted on the three main islands of the territory to determine the presence and distribution of Aedes spp. Larvae, pupae and adult mosquitoes were collected from 54 sampling points in different environments, with a final sampling of 3747 immature stages and 606 adults. The main identified breeding sites were described. Ae. polynesiensis was found in every sampled site in peridomestic and wild habitats. Ae. aegypti was only found on the island of Wallis in peridomestic environments with a limited distribution. Two other Aedes species endemic to the Pacific were recorded, Aedes oceanicus and Aedes futunae. To evaluate the ability of local Ae. polynesiensis to transmit the chikungunya virus (CHIKV), two field populations were analyzed for vector competence using experimental oral exposure of females to CHIKV and infection, dissemination and transmission assays. Results showed that both populations of Ae. polynesiensis were competent for CHIKV (30% at 7 days post-infection). CONCLUSIONS/SIGNIFICANCE: This study showed the ubiquitous distribution and abundance of Ae. polynesiensis on the three islands and demonstrated that local populations were able to transmit CHIKV. Combined with the presence and expansion of Ae. aegypti on the main island of Wallis, these data highlight the risk of transmission of arboviral diseases in the territory of Wallis and Futuna and provide relevant information for entomological surveillance and vector control programs.


Sujet(s)
Aedes/croissance et développement , Fièvre chikungunya/transmission , Transmission de maladie infectieuse , Écosystème , Vecteurs moustiques/croissance et développement , Animaux , Femelle , Polynésie , Études prospectives , Appréciation des risques , Enquêtes et questionnaires
12.
Sci Rep ; 10(1): 7750, 2020 05 08.
Article de Anglais | MEDLINE | ID: mdl-32385369

RÉSUMÉ

Many emerging arboviruses of global public health importance, such as dengue virus (DENV) and yellow fever virus (YFV), originated in sylvatic transmission cycles involving wild animals and forest-dwelling mosquitoes. Arbovirus emergence in the human population typically results from spillover transmission via bridge vectors, which are competent mosquitoes feeding on both humans and wild animals. Another related, but less studied concern, is the risk of 'spillback' transmission from humans into novel sylvatic cycles. We colonized a sylvatic population of Aedes malayensis from a forested area of the Nakai district in Laos to evaluate its potential as an arbovirus bridge vector. We found that this Ae. malayensis population was overall less competent for DENV and YFV than an urban population of Aedes aegypti. Olfactometer experiments showed that our Ae. malayensis colony did not display any detectable attraction to human scent in laboratory conditions. The relatively modest vector competence for DENV and YFV, combined with a lack of detectable attraction to human odor, indicate a low potential for this sylvatic Ae. malayensis population to act as an arbovirus bridge vector. However, we caution that opportunistic blood feeding on humans by sylvatic Ae. malayensis may occasionally contribute to bridge sylvatic and human transmission cycles.


Sujet(s)
Aedes/physiologie , Arbovirus/physiologie , Vecteurs moustiques/physiologie , Aedes/virologie , Animaux , Conservation des ressources naturelles , Humains , Laos , Vecteurs moustiques/virologie , Odorisants , Risque , Spécificité d'espèce
13.
Emerg Microbes Infect ; 7(1): 159, 2018 Sep 26.
Article de Anglais | MEDLINE | ID: mdl-30254274

RÉSUMÉ

Zika virus (ZIKV) is a Flavivirus that is transmitted to humans by Aedes mosquitoes. ZIKV is divided into two phylogenetic lineages, African and Asian. In the Asian lineage, Pacific and American clades have been linked to the recent worldwide outbreak of ZIKV. The aim of this study was to measure the vector competence of Aedes aegypti for seven ZIKV strains belonging to both lineages. We demonstrate that Ae. aegypti from New Caledonia (NC), South Pacific region, is a low-competence vector for Asian ZIKV (<10% transmission efficiency). No significant differences were observed in vector competence with respect to the sampling date and collection site of Asian ZIKV strains used (2014 and 2015 for New Caledonia, Pacific clade, and 2016 for French Guiana, American clade). The ability of the New Caledonian Ae. aegypti to transmit ZIKV is significantly greater for the earlier viral isolates belonging to the African lineage (>37% transmission efficiency after 9 days post-infection) compared to recent ZIKV isolates from African (10% transmission efficiency) and Asian lineages (<10% transmission efficiency). The results of this study demonstrate that Ae. aegypti from NC can become infected and replicate different ZIKV strains belonging to all lineages. Our data emphasize the importance of studying the interaction between vectors and their arboviruses according to each local geographic context. This approach will improve our understanding of arbovirus transmission to prevent their emergence and improve health surveillance.


Sujet(s)
Aedes/physiologie , Aedes/virologie , Vecteurs moustiques/physiologie , Vecteurs moustiques/virologie , Infection par le virus Zika/transmission , Virus Zika/physiologie , Animaux , Asie/épidémiologie , Épidémies de maladies , Femelle , Humains , Nouvelle-Calédonie/épidémiologie , Phylogenèse , Virus Zika/classification , Virus Zika/génétique , Virus Zika/isolement et purification , Infection par le virus Zika/épidémiologie , Infection par le virus Zika/virologie
14.
PLoS Negl Trop Dis ; 12(7): e0006637, 2018 07.
Article de Anglais | MEDLINE | ID: mdl-30016372

RÉSUMÉ

BACKGROUND: In 2013, Zika virus (ZIKV) emerged in French Polynesia and spread through the Pacific region between 2013 and 2017. Several potential Aedes mosquitoes may have contributed to the ZIKV transmission including Aedes aegypti, the main arbovirus vector in the region, and Aedes polynesiensis, vector of lymphatic filariasis and secondary vector of dengue virus. The aim of this study was to analyze the ability of these two Pacific vectors to transmit ZIKV at a regional scale, through the evaluation and comparison of the vector competence of wild Ae. aegypti and Ae. polynesiensis populations from different Pacific islands for a ZIKV strain which circulated in this region during the 2013-2017 outbreak. METHODOLOGY/PRINCIPAL FINDINGS: Field Ae. aegypti (three populations) and Ae. polynesiensis (two populations) from the Pacific region were collected for this study. Female mosquitoes were orally exposed to ZIKV (107 TCID50/mL) isolated in the region in 2014. At 6, 9, 14 and 21 days post-infection, mosquito bodies (thorax and abdomen), heads and saliva were analyzed to measure infection, dissemination, transmission rates and transmission efficiency, respectively. According to our results, ZIKV infection rates were heterogeneous between the Ae. aegypti populations, but the dissemination rates were moderate and more homogenous between these populations. For Ae. polynesiensis, infection rates were less heterogeneous between the two populations tested. The transmission rate and efficiency results revealed a low vector competence for ZIKV of the different Aedes vector populations under study. CONCLUSION/SIGNIFICANCE: Our results indicated a low ZIKV transmission by Ae. aegypti and Ae. polynesiensis tested from the Pacific region. These results were unexpected and suggest the importance of other factors especially the vector density, the mosquito lifespan or the large immunologically naive fraction of the population that may have contributed to the rapid spread of the ZIKV in the Pacific region during the 2013-2017 outbreak.


Sujet(s)
Aedes/virologie , Vecteurs moustiques/virologie , Infection par le virus Zika/transmission , Virus Zika/physiologie , Aedes/physiologie , Animaux , Épidémies de maladies , Femelle , Humains , Vecteurs moustiques/physiologie , Iles du Pacifique/épidémiologie , Salive/virologie , Virus Zika/génétique , Virus Zika/isolement et purification , Infection par le virus Zika/épidémiologie , Infection par le virus Zika/virologie
15.
Microbes Infect ; 20(11-12): 646-660, 2018 12.
Article de Anglais | MEDLINE | ID: mdl-29481868

RÉSUMÉ

The mosquito-borne arbovirus Zika virus (ZIKV, Flavivirus, Flaviviridae), has caused an outbreak impressive by its magnitude and rapid spread. First detected in Uganda in Africa in 1947, from where it spread to Asia in the 1960s, it emerged in 2007 on the Yap Island in Micronesia and hit most islands in the Pacific region in 2013. Subsequently, ZIKV was detected in the Caribbean, and Central and South America in 2015, and reached North America in 2016. Although ZIKV infections are in general asymptomatic or causing mild self-limiting illness, severe symptoms have been described including neurological disorders and microcephaly in newborns. To face such an alarming health situation, WHO has declared Zika as an emerging global health threat. This review summarizes the literature on the main vectors of ZIKV (sylvatic and urban) across all the five continents with special focus on vector competence studies.


Sujet(s)
Vecteurs moustiques/physiologie , Vecteurs moustiques/virologie , Infection par le virus Zika/épidémiologie , Infection par le virus Zika/transmission , Virus Zika/isolement et purification , Aedes/classification , Aedes/physiologie , Aedes/virologie , Animaux , Maladies transmissibles émergentes/épidémiologie , Maladies transmissibles émergentes/transmission , Maladies transmissibles émergentes/virologie , Épidémies de maladies , Géographie , Humains , Vecteurs moustiques/classification , Virus Zika/pathogénicité , Infection par le virus Zika/virologie
16.
Emerg Infect Dis ; 24(3): 604-605, 2018 03.
Article de Anglais | MEDLINE | ID: mdl-29460752

RÉSUMÉ

In June 2017, an Anopheles mosquito species was detected in New Caledonia. Morphologic identification and genomic sequencing revealed that the specimens tested belong to An. bancroftii genotype A1. This introduction underscores the risk for local malaria transmission and the vulnerability of New Caledonia to vector introduction.


Sujet(s)
Anopheles/classification , Anopheles/parasitologie , Vecteurs insectes/classification , Vecteurs insectes/parasitologie , Paludisme/parasitologie , Paludisme/transmission , Animaux , Anopheles/génétique , Gènes d'insecte , Génotype , Humains , Vecteurs insectes/génétique , Paludisme/épidémiologie , Nouvelle-Calédonie/épidémiologie , Phylogenèse
18.
Parasit Vectors ; 10(1): 381, 2017 Aug 09.
Article de Anglais | MEDLINE | ID: mdl-28793920

RÉSUMÉ

BACKGROUND: Dengue virus (DENV) is the arbovirus with the highest incidence in New Caledonia and in the South Pacific region. In 2012-2014, a major DENV-1 outbreak occurred in New Caledonia. The only known vector of DENV in New Caledonia is Aedes aegypti but no study has yet evaluated the competence of New Caledonia Ae. aegypti populations to transmit DENV. This study compared the ability of field-collected Ae. aegypti from different locations in New Caledonia to transmit the DENV-1 responsible for the 2012-2014 outbreak. This study also aimed to compare the New Caledonia results with the vector competence of Ae. aegypti from French Polynesia as these two French countries have close links, including arbovirus circulation. METHODS: Three wild Ae. aegypti populations were collected in New Caledonia and one in French Polynesia. Female mosquitoes were orally exposed to DENV-1 (106 FFU/ml). Mosquito bodies (thorax and abdomen), heads and saliva were analyzed to measure infection, dissemination, transmission rates and transmission efficiency, at 7, 14 and 21 days post-infection (dpi), respectively. RESULTS: DENV-1 infection rates were heterogeneous, but dissemination rates were high and homogenous among the three Ae. aegypti populations from New Caledonia. Despite this high DENV-1 dissemination rate, the transmission rate, and therefore the transmission efficiency, observed were low. Aedes aegypti population from New Caledonia was less susceptible to infection and had lower ability to transmit DENV-1 than Ae. aegypti populations from French Polynesia. CONCLUSION: This study suggests that even if susceptible to infection, the New Caledonian Ae. aegypti populations were moderately competent vectors for DENV-1 strain from the 2012-2014 outbreak. These results strongly suggest that other factors might have contributed to the spread of this DENV-1 strain in New Caledonia and in the Pacific region.


Sujet(s)
Aedes/physiologie , Aedes/virologie , Virus de la dengue/physiologie , Dengue/transmission , Vecteurs moustiques/physiologie , Vecteurs moustiques/virologie , Aedes/génétique , Animaux , Dengue/épidémiologie , Épidémies de maladies , Femelle , Humains , Vecteurs moustiques/génétique , Nouvelle-Calédonie/épidémiologie , Salive/virologie , Sérogroupe
19.
PLoS Negl Trop Dis ; 10(1): e0004374, 2016 Jan.
Article de Anglais | MEDLINE | ID: mdl-26799213

RÉSUMÉ

BACKGROUND: The Pacific region is an area unique in the world, composed of thousands of islands with differing climates and environments. The spreading and establishment of the mosquito Aedes aegypti in these islands might be linked to human migration. Ae. aegypti is the major vector of arboviruses (dengue, chikungunya and Zika viruses) in the region. The intense circulation of these viruses in the Pacific during the last decade led to an increase of vector control measures by local health authorities. The aim of this study is to analyze the genetic relationships among Ae. aegypti populations in this region. METHODOLOGY/PRINCIPAL FINDING: We studied the genetic variability and population genetics of 270 Ae. aegypti, sampled from 9 locations in New Caledonia, Fiji, Tonga and French Polynesia by analyzing nine microsatellites and two mitochondrial DNA regions (CO1 and ND4). Microsatellite markers revealed heterogeneity in the genetic structure between the western, central and eastern Pacific island countries. The microsatellite markers indicate a statistically moderate differentiation (FST = 0.136; P < = 0.001) in relation to island isolation. A high degree of mixed ancestry can be observed in the most important towns (e.g. Noumea, Suva and Papeete) compared with the most isolated islands (e.g. Ouvea and Vaitahu). Phylogenetic analysis indicated that most of samples are related to Asian and American specimens. CONCLUSIONS/SIGNIFICANCE: Our results suggest a link between human migrations in the Pacific region and the origin of Ae. aegypti populations. The genetic pattern observed might be linked to the island isolation and to the different environmental conditions or ecosystems.


Sujet(s)
Aedes/génétique , Aedes/virologie , Arbovirus/physiologie , Variation génétique , Vecteurs insectes , Phylogenèse , Animaux , ADN , ADN mitochondrial/génétique , Répétitions microsatellites , Iles du Pacifique
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE
...